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The problem of heat conduction with a variable heat transfer coefficient is re- 
duced to the solution of a Volterra integral equation of the second kind with 
a kernel havinga singularity. 

The temperature field of solids which have a heat transfer coefficient that varies with 
time is often encountered in practical problems. For example, there is the well-known pro- 
blem of determining the temperature field of solids enveloped by pulsating flows of liquid 
or gas, which find application in problems involving the measurement of temperature in in- 
ternal combustion engines [I, 2], in turbulence phenomena [3], etc. 

There are a large number of papers devoted to this problem. In some of them, for example 
in [3-4], the problem of finding the temperature field is solved using various approximate 
methods. In [5], the case is considered when the relation Bi(Fo) can be represented in the 
form of a function which has a rational function by a Laplace transform. 

In this paper we describe a general method of solving the problem of nonstationary 
heat conduction with a variable heat transfer coefficient, the dependence of which on time 
is-arbitrary. 

Consider, for example, the heating of an infinite plate of thickness ~ with a variable 
heat transfer coefficient. In this case the mathematical formulation of the problem has 
the form 

a T  (1, Fo) 
a~ 

aT a'T ( i )  
a Fo O~ ~ 

T (~, 0) = T o, (2)  

aT (0, Fo) = 0, (3)  
a~ 

= Bi (Fo) [To (Fo) - -  T (1, Fo)]. (4)  

Following [5], we will denote the right side of Eq. (4) by q(Fo). We will assume for 
the moment that the quantity q~o) is known. Problem (!)-(14) then reduces to a new problem 
wit~ ~Dundary conditions of the second kind 

OT a2T (5)  
a Fo O~ 2 
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T (~, 0) = To, (6) 

OT (0, Fo) _ 0, (7) 
og 

OT (1, Fo) 
- q (Fo). (8) 0g 

Solving Eqs. (5)-(8) by the method of finite integral transformations [6], we obtain 
the solution for the temperature in the form 

Fo 2 T(~, Fo) = To-I- S q(o~)do-t-2 [(--  l)~exp(--~t~Fo) 
0 n : l  

FO 

I exp (~t% co) q (o) d~] cos ~x~ $, 
6 (9) 

where ~n = nw. 

Assuming ~ = i in Eq. (9), using Eq. 
obtain an integral equation in Y(Fo) 

(4), and putting Y(Fo) = T (i, Fo) - Tc(FO), we 

where 

Fo 

Y (Fo) = f (Fo) q- ,f K (Fo, o2) Bi (co) Y (o) do~, 
o ( l o )  

(Fo) = T O - -  T~ (Fo). 

From the last equation we obtain an integral equation for the heat flow through the surface 
x = ~ in the form 

Fo 

q (Fo) ---- F (Fo) -l- Bi (Fo) S K (Fo, co) q (o~) do, (11) 
0 

F (Vo) = [ (Fo) Bi (Fo). 

It should be noted, however, that in the case considered we have to deal with a Vol- 
terra integral equation of the second kind with a special type of kernel having a singularity 
along the line m = Fo. Nevertheless, as is easily seen expressions 

Fo Fo 

0 0 

remain bounded. 

The generally accepted methods [7] for the numerical solution of Eqs. (ii) cannot be 
used. Below we consider an algorithm for the numerical solution of Eq. (!I), in which the 
effect of the singularity is eliminated. 

Our problem is to obtain a set of values of the heat flow as a function of different 
values of the~ourier numbers, namely, 

q (Fo ~ = q (0), ah ) [ akh \ q(Fo z ) = q  - ~ -  . . . . .  q(Fo ~ ) = q ~ ) .  
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Here h is a previously chosen (fairly small) time interval. Putting ah/6 2, and sub- 
stituting into Eq. (Ii) instead of the variable Fo its specific value s, Eq. (Ii) becomes 

s 2 q(s) = F ( s ) - - B i ( s )  j 'q(co)dco--2Bi(s)  • exp(--lx~s ) exp(tt~co)q(co)dr 
0 n = l  0 

(12)  

Similarly for the moment ks we have 

ks 

q(ks) = F ( k s ) - - B i ( k s )  S q ( (o )do) - -2Bi (ks  ) • exp(--~t~ks) S exp 0t~o)) q((o)&o. 
0 n = l  0 

(13) 

Replacement of the integral equations (12) and (13) by a set of algebraic equations 
using the usual quadrature formulas (the trapezium, Simpson's, etc.) does not lead to the 
desired result due to the singularity in the kernel. In view of this we propose to use the 
Ootes type quadrature formula with a weighting function [8]. 

We then have for Eq. (12)* 

q (s)= F (s)--Bi (s){[Aoq (0) f- Boq (s)] - -  2 ~ exp (la~ s)[Aln q (0) -i- BInq(S)] } , 
n ~ l  

1 

t A o = - s  ( y - - 1 ) d y =  s ,  
2 

0 

l 

f s Bo = S ydy -- 2 ' 
0 

1 
exp (~s) 1 1 

A~m = - - s  exp(~t~sy) (y- -  1 ) d y =  s} x4 ~t~ s}-t 4 ' 
0 

1 
exp (~t~ s) exp (tt;~) , 1 

B[~ = s exp (IS~ sy) ydy = ~t~ s~ 4 ' s~t 4 " 
0 

Instead of Eq. 
quadrature formulas we Nave 

(ks) = F (ks) - -  Bi (ks) [Aoq (0) 4- Boq (s) -l- A N  (s) + Blq (2s) -~- q 

-i . . . . .  i A~_I q [(k - -  1) sl ~- Bk_~ q (ks) - -  2Bi (ks) • 

• ~ exp (--  ~t] ks) [A~ q (0) 4: B~ q (s) "- A~n q (s) -~- B] q (2s) -~- 
X . , . I  * i 

n = l  

/r -I-" -i . . . . . .  t- A~- '  q ((k - -  1) s) i B,~ q ((k - -  1) s) 

-t- A~ q ((k - -  1) s) -~- Bkn q (ks)]}, 
where 

(14) 

(13), using the additivity of the integrals and employing the Cotes type 

(15) 

S 
A.~ = B,,~ = -- 

2 
( r e : l ,  2 . . . . .  k - - l ) ,  

A~ ---- exp [ ~  (k - -  1) s] A[~, B2 = exp [ ~  (k - -  1) sl Bln.  

*In view of the smallness of the time interval h it is sufficient to confine ourselves to 
two terms in the quadrature formula. 
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Fig. i. Heat flow Q(W/m =) 
through the surface x = 
as a function of the time 
T(s), obtained by computer 
calculation. 

From the set of algebraic equations (14) and (15) we can find 
the values of the heat flow at the points ks (k = i, 2, 3,. ~ .). 

Equations (14) and (15) were solved numerically on a 
Minsk-32 computer from the following initial data: ~ ~ 0.006 m, 
Q = 14.7 x 10 -8 m2/sec, %=0.245W/m.degree, T c = 150 C, and 
To = 20~ with the variation of the Biot criterion being 
given by the relation 

Bi = 0,9I exp ( - -  Fo). 

Figure 1 shows the result of the numerical solution of 
the problem in the form of a curve of the heat flow through 
the external surface of the plate as a function of time. 

NOTATION 

T, temperature; Fo, Fourier number; a, thermal dif- 
fusivity; T, time; $, dimensionless coordinate; x, space 
coordinate; Bi, Biot number; ~ (Fo), heat transfer coef- 
ficient; X, thermal conductivity; To, initial plate tem- 
perature; T c (Fo), external medium temperature; q, heat 
flux; 8, plate thickness; h, time pitch. 
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